

Identical and Fraternal Twins: Fine-Grained Semantic Contrastive Learning of Sentence Representations

Qingfa Xiao^{1,3}, Shuangyin Li^{1;(\vec{s})} and Lei Chen^{2,3}

¹South China Normal University
²The Hong Kong University of Science and Technology
³The Hong Kong University of Science and Technology (Guangzhou)
qingfaxiao@m.scnu.edu.cn, shuangyinli@scnu.edu.cn, leichen@cse.ust.hk

Background: Sentence Embeddings

Learning universal representations of sentences has wide applications in NLP

- Semantic matching
- Sentence clustering
- Information retrieval
- ..

Background: Contrastive Learning

Contrastive learning is an intuitive and effective training objective that aims to create desired semantic representations by

Anchor Instance

h^{*}) Positive Instance

Negative Instance

- bringing semantically positive instances closer together
- pushing away those that are not semantically negative.

Motivation: The lack of fine-grained semantic discrimination ability via contrastive learning.

Motivation: The lack of fine-grained semantic discrimination ability via contrastive learning.

Motivation: Which twins are more similar?

Everyone can easily distinguish between these two pairs of twins.

But, can a language model do the same?

Objective: Keep the margins between the two pairs of twins to help model distinguish the subtle differences.

Challenges: Contrastive learning with data augementation

 Data augementation for gaining positve pairs with less semantic distortions

 Adaptive contrastive learning for different types of positive samples to address sub-optimal issues

Three main components in this IFCL framework:

- A fusion data augmentation technique
- A training loss function named Twin Loss
- A hippocampus queue mechanism

• A fusion data augmentation technique

minimizing semantic distortions and increasing diversity of expressions.

• A training loss function named Twin Loss

capturing **fine-grained semantics** and alleviating the sub-optimal issues according to their margins

• A hippocampus queue mechanism

storing the previous mini-batches into a short-term memory and **reusing** the negative effectively

Method: How to generate the Identical and Fraternal Twins?

Fraternal twins: the diverse pair with less semantic distortions

Method: InfoNCE Loss with positive and negative instances

For the set of identical twins $\{h_i, h_i^+\}_{i=1}^N$ or fraternal twins $\{h_i, h_i^-\}_{i=1}^N$, we define the function by using negative instances $\{\mathbf{H}_m\}_{m=1}^{k*N}$ stored in the hippocampus queue.

$$\ell_i^I = -\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i, \mathbf{h}_j^+)/\tau} + \varphi},$$
$$\varphi = \sum_{m=1}^{k*N} p_m * e^{\sin(\mathbf{h}_i, \mathbf{H}_m)/\tau},$$

Method: Twins Loss for fine-grained semantic understanding

- This loss function aim to keeping the margins between two types of positive pairs
- M represents the innate margins between identical and fraternal twins
- Each M depends on the previous step to prevent sub-optimal optimization problems

$$\ell_i^T = \left| e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_i^+)} - e^{\operatorname{sim}(\mathbf{h}_i, \mathbf{h}_i^-)} - \mathbf{M}_i \right|,$$
$$\mathbf{M}_i = e^{\operatorname{sim}(\mathbf{emb}_i, \mathbf{emb}_i^+)} - e^{\operatorname{sim}(\mathbf{emb}_i, \mathbf{emb}_i^-)}$$

Method:

Hippocampus Queue Mechanism for reusing instances

- The queue storing the negative is **continuously updated**
- The sample is gradient-free to save GPU memory
- The forgetting coefficient focus more on the latest instance

Results:

Experiments on semantic textual similarity tasks

- Evaluate using Spearman's correlation metric
- Performe well in both Chinese and English tasks.

Results of Chinese tasks						
Method	Chinese STS-B	SimCLUE				
BERT	55.52	29.89				
BERT-whitening•	68.27	_				
SimCSE-BERT•	68.91	40.74				
SimCSE-BERT [♦]	60.41	40.54				
IFCL-BERT [◊]	71.41	44.42				

Results of English tasks								
Method	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
BERT _{base}	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT-flow _{base}	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT-whitening _{base}	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
ConSERT _{base}	64.64	78.49	69.07	79.72	75.95	73.97	67.31	72.74
$SimCSE-BERT_{base}$	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
VaSCL-BERT _{base} \diamond	69.08	81.95	74.64	82.64	80.57	80.23	71.23	77.19
DCLR-BERT _{base} \diamond	70.81	83.73	75.11	82.56	78.44	78.31	71.59	77.22
MoCoSE-BERT _{base} [♦]	71.48	81.40	74.47	83.45	78.99	78.68	72.44	77.27
$\text{PT-BERT}_{\text{base}}$	71.20	83.76	76.34	82.63	78.90	79.42	71.94	77.74
IFCL-BERT _{base} ♦	71.57	82.35	75.08	83.03	80.17	80.27	72.16	77.80
BERT _{large}	57.73	61.17	61.18	68.07	70.25	59.59	60.34	62.62
ConSERT _{large}	70.69	82.96	74.13	82.78	76.66	77.53	70.37	76.45
$SimCSE_{large}$	70.88	84.16	76.43	84.50	79.76	79.26	73.88	78.41
DCLR-BERT _{large} \diamond	71.87	84.83	77.37	84.70	79.81	79.55	74.19	78.90
MoCoSE-BERT _{large} [♦]	74.50	84.54	77.32	84.11	79.67	80.53	73.26	79.13
IFCL-BERT _{large} [♂]	73.88	84.31	76.64	84.01	79.56	81.37	76.30	79.44

Analyse: What makes the Twins Loss effective?

Reducing the mutual information between positive pairs while preserving taskrelevant information is optimal for the task

• More diverse semantics are preserved

 $\mathbb{MI}(h, h^{-})$ is higher than $\mathbb{MI}(h, h^{+})$

• Mutual information of positive pairs contains more task-relevant information.

 $\mathbb{MI}(h,h^+) \approx \mathbb{MI}(h,h^-) \approx \mathbb{MI}_{task}$

Table 4. Mutual information and task-relevant information. The IFCL-BERT w/o TL means training IFCL-BERT without Twins Loss. The experiments are conducted with EnData and STS-B datasets on Bert-base.

Method	$\mathbb{MI}(h,h^+)$	$\mathbb{MI}(h,h^-)$	\mathbb{MI}_{task}
IFCL-BERT	4.15	4.17	4.31
IFCL-BERT w/o TL	4.23	4.20	4.58
SimCSE	4.24	-	4.52

Thank YOU

Q&A